KCNJ11

Gene Information
  • Official Symbol: KCNJ11
  • Official Name: potassium inwardly rectifying channel subfamily J member 11
  • Aliases and Previous Symbols: N/A
  • Entrez ID: 3767
  • UniProt: Q14654
  • Interactions: BioGRID
  • PubMed articles: Open PubMed
  • OMIM: Open OMIM
Function Summary
  • Entrez Summary: Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, is controlled by G-proteins and is found associated with the sulfonylurea receptor SUR. Mutations in this gene are a cause of familial persistent hyperinsulinemic hypoglycemia of infancy (PHHI), an autosomal recessive disorder characterized by unregulated insulin secretion. Defects in this gene may also contribute to autosomal dominant non-insulin-dependent diabetes mellitus type II (NIDDM), transient neonatal diabetes mellitus type 3 (TNDM3), and permanent neonatal diabetes mellitus (PNDM). Multiple alternatively spliced transcript variants that encode different protein isoforms have been described for this gene. [provided by RefSeq, Oct 2009].
  • UniProt Summary: This receptor is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellular barium (By similarity). Subunit of ATP-sensitive potassium channels (KATP). Can form cardiac and smooth muscle-type KATP channels with ABCC9. KCNJ11 forms the channel pore while ABCC9 is required for activation and regulation. {ECO:0000250, ECO:0000269|PubMed:17855752, ECO:0000269|PubMed:28842488, ECO:0000269|PubMed:9831708}.

Pfam Domains GO Terms


CRISPR Data

Compound Hit Most Correlated Genes in Chemogenomics Tissues where Essential in the Avana Dataset (DepMap 20Q1)

Essentiality in NALM6
  • Essentiality Rank: 8975
  • Expression level (log2 read counts): 2.4

Expression Distribution

  • Last modified: 2025/12/10 20:19
  • by 127.0.0.1